Whether in construction, aerospace or electronics, picking the right material for the job involves choosing the best fit among a limited number of options, which often leads to tricky compromises. Now, a development at the Masdar Institute in the United Arab Emirates could mark a paradigm shift toward designing and 3D printing high-performance materials with features that are custom-designed to fit a specific application.

Rather than creating entirely new materials, researchers ocused on changing the internal geometric structure of familiar plastics, metals, ceramics and composites. Tweaking materials from the ground up allowed the scientists to control their mechanical, thermal and electrical properties in unique ways.

Density and strength, for instance, usually go hand in hand. Strong materials like metals and alloys tend to be heavy, while foams and other lightweight composites are normally much weaker. Changing the internal structure, however, can lead to materials that are both strong and light at the same time by being airy rather than solid, and by deriving their strength from their shape alone. This is the same principle that gives the Eiffel Tower structural strength through the arrangement of its metal struts, despite the structure being 90 percent air.

The researchers built a computer model that can generate thousands of geometric arrangements, or “architectured foams,” for a given material. Each design gives rise to a different set of thermal, electrical and mechanical properties solely through implementing a different geometry. More importantly, the model can be directed to find the arrangement that maximizes certain properties to fit a desired application.

 Masdar Institute’s Dr. Rashid Abu Al-Rub, Associate Professor of Mechanical and Materials Engineering, demonstrates how aerospace components, like armrests, can be made lighter with “architecture foams.” Masdar Institute’s Dr. Rashid Abu Al-Rub, Associate Professor of Mechanical and Materials Engineering, demonstrates how aerospace components, like armrests, can be made lighter with “architecture foams.
Masdar Institute’s Dr. Rashid Abu Al-Rub, Associate Professor of Mechanical and Materials Engineering, demonstrates how aerospace components, like armrests, can be made lighter with “architecture foams.” Masdar Institute’s Dr. Rashid Abu Al-Rub, Associate Professor of Mechanical and Materials Engineering, demonstrates how aerospace components, like armrests, can be made lighter with “architecture foams.” (Image source: Masdar Institute News)

The structures are very complex, so they couldn’t be produced through conventional manufacturing methods. Luckily, however, recent technological advances have made it possible to 3D print these structures even though, in some cases, their features might be only a few nanometers (billionths of a meter) in size.

According to the researchers, the combined ability to design custom properties into a material and then manufacture it through 3D printing could disrupt the future of material design.

Applications could range from the aerospace industry, which would take advantage of the high strength and low weight of the nanoengineered materials, to fields that would take advantage of the materials’ porosity, such as water desalination or gas filtration.

> Read more by Dario Borghino, gizmag, July 5, 2016

Super-strong and airy 3D-printed supermaterials inch closer to reality